This paper deals with a flux-controllable NI HTS flux-switching machine (FSM) for electric vehicle (EV) applications. In a variable-speed rotating machine for EVs, such as electric buses, electric aircraft and electric ships, an electric motor capable of regulating the flux offers the advantage of constant output operation. In general, conventional HTS rotating machines have excellent flux-regulation performance, because they excite an HTS field coil. However, it is difficult to ensure any flux-regulation capabilities in HTS rotating machines using HTS field coils that apply the no-insulation (NI) winding technique, due to the inherent charge and discharge delays in these machines. Nevertheless, the NI winding technique is being actively researched as a key technology for the successful development of HTS rotating machines, because it can dramatically improve the operational stability of HTS field coils. Therefore, research to implement an HTS rotating machine with flux-regulation capabilities, while improving the operating stability of the HTS field coil using the NI winding technique, is required for EV applications. In this paper, we propose an HTS rotating machine with a flux switching structure, a type of topology of a rotating machine that is being actively studied for application to the electric motors used in EVs. The proposed HTS flux-switching machine (FSM) uses NI field coils, but additional field windings are applied for flux regulation, which enables flux control. In this study, an NI HTS field coil was also fabricated and tested because the characteristic resistance value should be used for the design and characteristic analyses of machines which utilize an NI coil. The simulation model used to analyze the flux-regulation performance capabilities of the NI HTS FSM were devised based on the characteristic resistance values obtained from a charging test of the fabricated NI HTS field coil. This study can provide a good reference for further research, including work on the manufacturing of a prototype NI HTS FSM for EV applications, and it can be used as a reference for the development of other HTS rotating machines, such as those used in large-scale wind power generation, where flux-regulation capabilities are required.
Read full abstract