While azides do not react with simple alkenes except under harsh conditions, a diboron alkene analogue, the doubly cyclic alkyl(amino)carbene (CAAC)-stabilized dicyanodiborene 1, reacts spontaneously with organic azides (7-10 equiv.) at room temperature to yield two equivalents of stable CAAC-stabilized imino(cyano)boranes (2-R). NMR-spectroscopic monitoring of the reaction mixtures shows the initial formation of a 1:1 mixture of 2-R and a relatively long-lived intermediate (Int), which in the presence of excess azide is converted into a second equivalent of 2-R. In the absence of excess azide, however, Int decomposes to 3, the product of an intramolecular C‒H activation by a putative dicoordinate borylene intermediate "(CAAC)B(CN)". Mechanistic insights from trapping experiments, NMR-spectroscopic and high-resolution mass spectrometry data, as well as DFT computations reveal that Int is the terminal borylene end-on-dinitrogen adduct [(CAAC)B(CN)(η1-N2)]. The formation of the iminoboranes 2-R from diborene 1 and RN3 proceeds via an azide-diborene Huisgen-type [3+2] cycloaddition reaction, followed by a retro-[3+2] cycloaddition, yielding 2-R and [(CAAC)B(CN)(η1-N2)]. The latter then undergoes either N2 extrusion and intramolecular C‒H activationto generate 3, or a Staudinger-type reaction with a second equivalent of azide to generate a second equivalent of the iminoborane 2-R.