Triple negative breast cancer (TNBC) is a notoriously difficult disease to treat, and many of the existing TNBC chemotherapeutics lack tumor selectivity and the capability for simultaneously visualizing and monitoring their own activity in the biological context. However, TNBC cells have been known to generate high levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). To this end, three novel small molecule theranostics 1a, 1c, and 2 consisting of both H2O2-responsive nitrogen mustard prodrug and profluorophore character have been designed, synthesized, and evaluated as targeted cancer therapeutics and bioimaging agents. The three theranostics comprise of boronate esters that deactivate nitrogen mustard functional groups and fluorophores but allow their selective activation through H2O2-specific oxidative deboronation for the release of the active drug and fluorophore. The three theranostics demonstrated H2O2-inducible DNA-alkylating capability and fluorescence turn-on properties in addition to selective anticancer activity. They are particularly effective in killing TNBC MDA-MB-468 cells with high H2O2 level while safe to normal epithelial MCF-10A cell. The conjugated boron-masked fluorophores in 1c and 2 are highly responsive towards H2O2, which enabled tracking of the theranostics in living cellular mitochondria and nucleus organelles. The three theranostics 1a, 1c, and 2 are capable of both selective release of the active drug to take effect in H2O2-rich cancer sites and simultaneously monitoring its activity. This single molecule system is of utmost importance to understand the function, efficacy, and mechanism of the H2O2-activated prodrugs and theranostics within the living recipient.
Read full abstract