Designing a low-cost, high-performance oxygen reduction reaction (ORR) catalyst to replace the precious metal catalyst remains a huge challenge for microbial fuel cells (MFCs). Herein, a facile and rapid approach to fabricate highly active N-doped hierarchical porous carbon (NHPC) supported bimetal CuCo/NHPC composites with densely accessible active sites is developed by pyrolysis of Cu-doped ZIF-67 (CuCo-ZIF) precursor. In which, CuCo-ZIF precursor is synthesized through a one-pot hydrothermal method. Results showed that in addition to create additional Cu-Nx sites and increase N content, the Cu doping induces a hierarchical porous structure CuCo/NHPC composite with pores centered around 2.4, 4.2 nm and 10–60 nm, which can significantly accelerate the mass/electron transfer and improve efficient utilization of the active sites. The resulting CuCo/NHPC composite provides abundant active sites, high content of pyridinic-N and graphitic-N, which significantly boosts ORR performances. The CuCo/NHPC-T with pyrolysis temperature of 800 °C achieves remarkable ORR activity with low charge transfer resistances, high half-wave potential. The MFC assembled with CuCo/NHPC-800 (774.2 mW·m−2 and 0.713 V) significantly outperforms MFC assembled with Co-NC-800 (541.9 mW·m−2 and 0.583 V) in terms of maximum power density and open-circuit voltage. Moreover, the output voltage of MFC assembled with CuCo/NHPC-800 exhibited no significant downward trend within 30 days, which was better than that of Pt/C catalyst. This work provides a feasible time-saving route to develop promising nitrogen-enriched mesoporous carbon bimetallic ORR catalysts.
Read full abstract