Dynamic Nuclear Polarization (DNP) is often achieved by the direct transfer of polarization from electrons to nuclei such as 13C, induced by microwave saturation of the wings of narrow EPR lines of radicals like trityl. In the indirect approach on the other hand, DNP is used to transfer the polarization from the electrons of radicals such as nitroxides that have broad EPR lines to nuclear spins I = 1H, followed by cross-polarization (CP) from I = 1H to S = 13C or other nuclei with low gyromagnetic ratios. This approach is particularly attractive for S = 15N, since direct DNP yields modest polarizations P(15N) < 4% with build-up times that can be as long as τDNP(15N) > 2 h. In this paper, we show that CP from 1H to 15N at 1.2 K can yield P(15N) = 25% with τCP-DNP(15N) = 10-15 min. After rapid dissolution and transfer to a solution-state NMR spectrometer, a polarization P(15N) = 20% was observed at 300 K. The longitudinal relaxation times in solution can be as long as T1(15N) > 800 s in favorable cases.