The 5-nitro-2-furaldehyde (5-NF) is an aldehyde aromatic organic compound that has been envisaged as an alternative marker for detecting nitrofurazone treatment abuse and to avoid the false positive results induced by the semicarbazide. Analyzing 5-NF presents challenges, and its derivatization reaction with hydrazine reagents is required to enhance the capability of its detection and its identification. This study aims at developping an analytical method for 5-NF determination in trout muscle samples based on chemical derivatization prior to analysis by liquid chromatography–tandem mass spectrometry. Four commercially available hydrazine reagents, namely: N,N-Dimethylhydrazine (DMH), 4-Hydrazinobenzoic acid (HBA), 2,4-Dichlorophenylhydrazine (2,4-DCPH) and 2,6-Dichlorophenylhydrazine (2,6-DCPH) were proposed for the first time as derivatizing reagents in the analysis of 5-NF. The derivatization reaction was simultaneously performed along with the extraction method in acidic condition using ultrasonic assistance and followed by liquid extraction using acetonitrile. The efficiency of the chemical reaction with 5-NF was examined and the reaction conditions including the concentration of hydrochloric acid, pH, temperature, reaction time and the concentration of the derivatizing reagents were optimized. Experiments with fortified samples demonstrated that 2,4-DCPH derivatizing reagent at 20 mM for 20 min of ultrasonic treatment under acidic condition (pH 4) gave an effective sample derivatization method for 5-NF analysis. Under the optimized conditions, the calibration curves were linear from 0.25 to 2 μg kg−1 with coefficient of determination >0.99. The recoveries ranged from 89 % to 116 % and precision was less than 13 %. The limit of detection and quantification were 0.1 and 0.2 μg kg−1, respectively.