ABSTRACT Nitrohumic acids (NHAs) are considered as promising slow-release N fertilizers. In this study, NHA was produced from six organic feedstocks, including coal, leonardite, municipal waste compost, sewage sludge, and apple and beech biochars via nitration using nitric acid. The nitration process was conducted in two ways: (i) after humic acid (HA) extraction (NHAD), and (ii) before HA extraction (NHAID). The prepared NHAs were then characterized using FT-IR and CHNS analysis. Additionally, N mineralization of NHAs was investigated in a sandy loam soil sample. The FT-IR spectra showed that both methods of nitration loaded nitro (NO2) groups into the HA structure. However, the CHNS analysis indicated the highest rate of N increase for NHAD (106%) and NHAID (113%) extracted from leonardite. Moreover, on average, the total acidity and carboxylic groups of the HAs increased by 7.5% and 14.5% after the nitration processes, respectively. The highest extraction yields of NHAD (26.1%) and NHAID (42.1%) were also obtained from leonardite. Although the extraction yield of NHAID was on average two times higher than that of NHAD, NHAD indicated a higher soil N availability (1.4 times). We concluded that the NHAD extracted from leonardite could be considered as an alternative slow-release N fertilizer.