Fungi capable of simultaneous nitrogen and phosphorus removal from wastewater is rarely found. Here, a novel fungal strain (SNDM1) performing heterotrophic nitrification, aerobic denitrification, and phosphate removal was isolated and identified as Mucor circinelloides. The favorable nutrient removal conditions by the strain using glucose were C/N ratios of 25–30, salinities of 0 %–3 %, and pH of 7.5. Strain SNDM1 achieved ammonium, nitrite, nitrate, and phosphate removal rates of 5.23, 10.08, 4.88, and 0.97 mg/L/h. Nitrogen balance indicated that gaseous (18.60 %–24.55 %) and intracellular nitrogen (43.76 %–70.63 %) were primary fate of initial nitrogen. Enzyme activity revealed that ammonium removal occurred through heterotrophic nitrification and aerobic denitrification. Removed phosphorus was mainly transformed into cell membranes (56 %–64 %) and extracellular polymeric substances (20 %–26 %). Orthophosphate was the major intracellular phosphorus species, while polyphosphate and pyrophosphate existed extracellularly. These findings highlight the potential of this fungal strain for bioremediating polluted wastewater.