No large-mammal surgical models exist for geographic atrophy (GA), choroidal neovascularization (CNV), and pachychoroidal vascular remodeling. Our goal was to develop a porcine RPE debridement model of advanced macular degeneration to study photoreceptor cell loss and choroidal remodeling. Seven 2-month-old female domestic pigs were used for this study. After 25G vitrectomy, the area centralis was detached via subretinal bleb. A nitinol wire (Finesse Flex Loop) was used to debride RPE cells across a 3- to 5-mm diameter region. Fluid-air exchange was performed, and 20% SF6 gas injected. Animals underwent fundus photography, fluorescein angiography, optical coherence tomography (OCT), and OCT-angiography (OCTA) at 2 weeks, 1month, 2months, 3months, and 6 months postoperatively. Retinal histology was obtained at euthanasia, 2months (n = 3), 3months (n = 2), or 6months (n = 2) after surgery. RPE debridement resulted in GA with rapid loss of choriocapillaris, progressive loss of photoreceptors, and pachychoroidal changes in Sattler's and Haller's layers in all seven eyes undergoing debridement within 2 months. OCT and histological findings included subretinal disciform scar with overlying outer retinal atrophy; outer retinal tubulations and subretinal hyper-reflective material. OCTA revealed type 2 CNV (n = 4) at the edges of the debridement zone by 2 months, but there was no significant exudation noted at any time point. Surgical debridement of the RPE results in GA, CNV, and pachychoroid and reproduced all forms of advanced macular degeneration. This surgical model may be useful in examining the role of RPE and other cell replacement in treating advanced macular disease.
Read full abstract