Two Ln26 @CO3 (Ln=Dy and Tb) cluster-based lanthanide-transition-metal-organic frameworks (Ln MOFs) formulated as [Dy26 Cu3 (Nic)24 (CH3 COO)8 (CO3 )11 (OH)26 (H2 O)14 ]Cl ⋅3 H2 O (1; HNic=nicotinic acid) and [Tb26 NaAg3 (Nic)27 (CH3 COO)6 (CO3 )11 (OH)26 Cl(H2 O)15 ]⋅7.5 H2 O (2) have been successfully synthesized by hydrothermal methods and characterized by IR, thermogravimetric analysis (TGA), elemental analysis, and single X-ray diffraction. Compound 1 crystallizes in the monoclinic space group Cc with a=35.775(12) Å, b=33.346(11) Å, c=24.424(8) Å, β=93.993(5)°, V=29065(16) Å(3) , whereas 2 crystallizes in the triclinic space group P$\bar 1$ with a=20.4929(19) Å, b=24.671(2) Å, c=29.727(3) Å, α=81.9990(10)°, β=88.0830(10)°, γ=89.9940(10)°, V=14875(2) Å(3) . Structural analysis indicates the framework of 1 is a 3D perovskite-like structure constructed out of CO3 @Dy26 building units and Cu(+) centers by means of nicotinic acid ligand bridging. In 2, however, nanosized CO3 @Tb26 units and [Ag3 Cl](2+) centers are connected by Nic(-) bridges to give rise to a 2D structure. It is worth mentioning that this kind of 4d-4f cluster-based MOF is quite rare as most of the reported analogous compounds are 3d-4f ones. Additionally, the solid-state emission spectra of pure compound 2 at room temperature suggest an efficient energy transfer from the ligand Nic(-) to Tb(3+) ions, which we called the "antenna effect". Compound 2 shows a good two-photon absorption (TPA) with a TPA coefficient of 0.06947 cm GM(-1) (1 GM=10(-50) cm(4) s photon(-1) ), which indicates that compound 2 might be a good choice for third-order nonlinear optical materials.