To improve the tribological characteristics of materials employed in spatial mechanisms, there is a significant requirement to develop solid lubricating composites with superior performance. This study investigates the tribological characteristics of composites consisting of a nickel matrix combined with silver molybdate and barium molybdate. The experimental analysis focuses on evaluating the tribological behaviors of these composites from 25 °C to 800 °C. The findings indicate that the combined application of silver molybdate and barium molybdate resulted in enhanced self-lubricating properties of the composites, particularly at temperatures over 400 °C. The inclusion of both silver molybdate and barium molybdate in the composite resulted in the achievement of a low friction coefficient (0.34–0.5), as well as a wear rate ranging from 0.47 to 1.25 × 10−4 mm3 N−1m−1, within the temperature range of 400 to 800 °C. Furthermore, an analysis was conducted to examine the wear processes of the composites at various sliding temperatures. This analysis was based on the evaluation of the chemical composition and morphologies of the sliding surfaces, which were verified by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy.