Metal-organic coordination compounds (MCCs) have received a lot of attention as anodes for lithium-ion batteries (LIBs) due to their abundant structural configuration, tunable morphology, high surface area, and low cost, but the lithium storage mechanism of MCCs is still a mystery. Herein, we synthesized a kind of nickel-based coordination compound (marked as Ni-PP-x, x = 1, 2, or 3) with tunable morphologies and different solvent ratios via a microwave irradiation solvothermal method and then applied them as anodes for LIBs. Among them, the Ni-PP-2 electrode, with a hollow and urchin-like structure, showed the longest lifespan and maintained a high capacity of 713 mAh g−1 at 2.0 A g−1 after 800 cycles. Measured by ex situ X-ray photoelectron spectroscopy (XPS) and ex situ Fourier transform infrared spectroscopy (FT-IR), the Ni-PP-2 electrode was confirmed by a redox reaction mechanism of Li+ cations with a benzene ring and O-Ni2+/O-Ni0 coordination bonds, and the cyclic voltammetry curves have exhibited a capacitive dominated lithium storage behavior. This work provides a new type of Ni-based coordination compound and an in-depth understanding of their lithium storage mechanism, paving the way for the application of MCC compounds in the future.
Read full abstract