Multiple myeloma (MM) is the second common hematological malignancy characterized by the abnormal proliferation of plasma cells. Although advances in the past decades have led to improved outcomes and longer survival, MM remains largely incurable. New targets and targeted therapy may help to achieve better outcomes. Proton exporter NHE1 is highly expressed by tumor cells to maintain pH gradient for their survival and its inhibitor Hexamethylene amiloride (HA) has been demonstrated anti-tumor effect. However, whether HA could inhibit MM remains unknown. In this study, we firstly demonstrated that elevated expression level of NHE1 is associated with poor prognosis of MM. Moreover, the NHE1 inhibitor HA inhibited growth and induced apoptosis effectively in both MM cell lines and primary bone marrow cells from MM patients. Mechanistically, inhibitory effect was achieved partially through TFE3-mediated lysosomal production. With a MM xenograft mouse model, we verified that HA has a significant anti MM effect in vivo. Importantly, HA induced apoptosis of the carfilzomib-resistant MM cells and enhanced the effect of carfilzomib in MM. In summary, we demonstrated that NHE1 inhibitor HA can effectively inhibit MM growth both in vitro and in vivo, providing a new therapeutic strategy for improved outcome of de novo and resistant MM.
Read full abstract