This study investigated the beneficial effects of Lactobacillus reuteri TISTR 2736 on glucose homeostasis, carbohydrate metabolism, and the underlying mechanisms of its actions in type 2 diabetic (T2D) rats. A rat model of T2D was established by a combination of a high-fat diet and streptozotocin. The diabetic rats were treated daily with L. reuteri TISTR 2736 (2 × 108 CFU/day) for 30 days. Biochemical, histopathological, and molecular analyses were carried out to determine insulin signaling, carbohydrate metabolism, oxidative stress, and inflammation. The results demonstrated that treatment with L. reuteri TISTR 2736 significantly ameliorated fasting blood glucose and glucose intolerance, and improved insulin sensitivity indices in the diabetic rats. The hepatic histopathology was improved with L. reuteri TISTR 2736 treatment, which was correlated with a reduction of hepatic lipid profiles. L. reuteri TISTR 2736 significantly reduced glycogen content, fructose 1,6-bisphosphatase activity, and phosphoenolpyruvate carboxykinase 1 protein expression, and enhanced hexokinase activity in the diabetic liver. The downregulation of IRS1 and phosphorylated IRS1Ser307 and upregulation of PI3K and phosphorylated AKTSer473 proteins in the liver were found in the L. reuteri TISTR 2736-treated diabetic group. Furthermore, it was able to suppress oxidative stress and inflammation in the diabetic rats, as demonstrated by decreased malondialdehyde and protein levels of NF-κB, IL-6 and TNF-α, but increased antioxidant enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase. By inhibiting oxidative and inflammatory stress, L. reuteri TISTR 2736 alleviated hyperglycemia and improved carbohydrate metabolism through activating IRS1/PI3K/AKT pathway in the T2D rats.
Read full abstract