For high-quality growth to occur, new-type urbanization and environmental preservation must coexist and advance at the same time. The focus has shifted to maintain a balance between ecological quality and urbanization growth. This study focuses on the Yangtze River Delta (YRD) in China, utilizing panel data from 41 cities in the YRD spanning from 2009 to 2021 to construct evaluation index systems for new (type of) urbanization and ecological environment. To analyze spatial-temporal evolutionary aspects and determine the causes of the degree of coupling coordination between new-type urbanization and the ecological environment, methodologies such as the entropy weight method, coupled coordination degree model, and Tobit regression approach were used. The results show that (1) economic urbanization has experienced the most growth in the level of new-type urbanization in the YRD, which has been steadily increasing. Moreover, the ecological environment evaluation score increased from 0.581 in 2009 to 0.701 in 2021, revealing a cyclical pattern of increase and decrease in its evolutionary trajectory. (2) Within the scope of the study, the overall coupling coordination degree between new-type urbanization and ecological environment has increased, with the average value rising from 0.512 in 2009 to 0.540 in 2021. In comparison to Lishui, Huaibei, Huainan, Ningbo, Chuzhou, and Bozhou saw a greater increase in coupling and coordination degree, with pronounced variations and clustering patterns visible in their spatial distribution. (3) According to the Tobit regression analysis, the level of economic development, technological progress, industrial concentration, global openness, and educational investment had significant positive effects on the degree of coupled coordination between new-type urbanization and the ecological environment in the YRD, whereas the level of information technology did not reach the significance threshold. The findings of the study are crucial for establishing a regional framework for green and sustainable development, as well as for facilitating the coordinated growth of new-type urbanization and ecological environment. These findings hold great potential for driving positive change in both urban development and environmental conservation efforts.
Read full abstract