The object of the study is the design, manufacturing technology and methods of stabilizing the electrophysical characteristics of measuring transducers. The problem solved in the research is the creation of methods and design and technological solutions to ensure stability used in the development and manufacture of measuring transducers. As a result of the conducted research, designs and technologies for manufacturing and stabilizing the electrophysical characteristics of measuring transducers were developed. The features of the developed designs of measuring transducers are increased in comparison with the known time stability with a basic error of no more than 0.1 %/year. Technologies for stabilizing the parameters of measuring transducers, in contrast to the known ones, differ in their versatility, since most elastic elements that perceive mechanical magnitude are membranes and beams, on which thermocompensating films are easily applied. The stabilization of the parameters of the entire measuring transducer, unlike the known ones, is carried out after the removal of internal mechanical stresses of each element and part of the measuring transducer through the integrated use of current and vibration dynamic loads. Thus, the use of complex compensation due to the application of a new method of compensation of internal mechanical stresses in the structure, based on the use of multilayer film compositions formed on sensitive elements, followed by thermal and vibration stabilization of measuring transducers. In addition, reducing the measurement error and increasing the time and parametric stability of the measuring transducers is achieved through the use of specialized heat treatment modes, training resonant vibration and current loads. When developing structures and stabilization methods, previously developed engineering mathematical models were used, including constructive, informational, dimensional, technological and circuit engineering. At the same time, depending on the adopted design and the technology used, engineering models were modified by including known coefficients and dependencies. This method has significantly reduced the cost and complexity of development