The synthesis of a centrally functionalized, ribbon-shaped [6]polynorbornane ligand L that self-assembles with Pd(II) cations into a {Pd2 L4 } coordination cage is reported. The shape-persistent {Pd2 L4 } cage contains two axial cationic centers and an array of four equatorial H-bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6 ] with six diatomic ligands. Very strong binding of [Pt(CN)6 ](2-) to the cage was observed, with the structure of the host-guest complex {[Pt(CN)6 ]@Pd2 L4 } supported by NMR spectroscopy, MS, and X-ray data. The self-assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h -symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6 ](3-) and square-planar [Pt(CN)4 ](2-) were strongly bound. Smaller octahedral anions such as [SiF6 ](2-) , neutral carbonyl complexes ([M(CO)6 ]; M=Cr, Mo, W) and the linear [Ag(CN)2 ](-) anion were only weakly bound, showing that both size and charge match are key factors for high-affinity binding.