In the present study, neuroprotective effects of berberine (BBR) and berberine nanomicelle (BBR-NM) against lipopolysaccharides (LPS)-induced stress oxidative were investigated, and compared by evaluating their antioxidant and anti-inflammatory activities in PC12 cells, and rat brains. A fast, green, and simple synthesis method was used to prepare BBR-NMs. The prepared BBR-NMs were then characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In vitro experiments were carried out on the LPS-treated PC12 cell lines to investigate the anti-cytotoxic and antioxidant properties of BBR-NM and BBR. The results showed that BBR-NMs with a diameter of ~100 nm had higher protective effects against ROS production and cytotoxicity induced by LPS in PC12 cells in comparison with free BBR. Moreover, in vivo experiments indicated that the activity levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), increased in the brain of LPS-treated rats administrated with BBR-NM at the optimum dose of 100 mg.kg-1. BBR-NM administration also resulted in decreased concentration of lipid peroxidation (MDA) and pro-inflammatory cytokines, such as Serum interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Overall, BBR-NM demonstrated higher neuroprotective effects than free BBR, making it a promising treatment for improving many diseases caused by oxidative stress and inflammation.
Read full abstract