In forensic pathology, identifying causes of death in traumatic brain injuries (TBIs) devoid of observable signs presents a significant challenge. Post-mortem biochemistry plays a crucial role in forensic medicine, particularly in determining causes of death in TBIs that lack macroscopic or histopathological evidence. This study aimed to evaluate the utility of Neuron Specific Enolase (NSE) and S100 Calcium Binding Protein B (S100B) in post-mortem serum and cerebrospinal fluid (CSF) as markers for TBI. The relationship of these biochemical markers with survival time and post-mortem interval was also studied. The study sample consisted of 63 cases each from the TBI and the Non-TBI (NTBI) group. The NTBI group comprised of deaths due to mechanical asphyxia, myocardial infarction and isolated trunk trauma. While serum S100B and CSF NSE emerged as a promising marker for TBI, CSF S100B failed to differentiate TBI from the other causes of death. The absence of an association between the level of markers and survival time or post-mortem interval in TBIs highlights the limitations of these biomarkers in such contexts. This study underscores the potential of biochemical markers like serum S100B and CSF NSE in identifying TBI deaths, aiding forensic diagnoses where there are evidentiary limitations in traditional methods. Further research exploring additional markers and body fluids could enhance diagnostic precision in forensic neuropathology.
Read full abstract