CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. Hundreds of pathogenic variants have been described, associated with a significant phenotypic heterogeneity observed among patients. To date, different knockout mouse models have been generated. Here we present a new knockin CDKL5 mouse model carrying a humanized, well-characterized nonsense variant (c.1090G > T; p.E364X) described in the C-terminal domain of the CDKL5 protein in a female patient with a milder phenotype. Both male and female Cdkl5E364X mice were analyzed. The novel Cdkl5E364X mouse showed altered neurological and motor neuron maturation, hyperactivity, defective coordination and impaired memory and cognition. Gene expression analysis highlighted an unexpected reduction of Cdkl5 expression in Cdkl5E364X mice brain tissues, with a significant increase in overall neuron-specific gene expression and an area-dependent alteration of astrocyte- and oligodendrocyte-specific transcripts. Moreover, our results showed that the loss of CDKL5 protein had the most significant impact on the cerebellum and hippocampus, compared to other analyzed tissues. A targeted analysis to study synaptic plasticity in cerebellum and hippocampus showed reduced Gabra1 and Gabra5 expression levels in females, whereas Gabra1 expression was increased in males, suggesting an opposite, sex-dependent regulation of the GABA receptor expression already described in humans. In conclusion, the novel Cdkl5E364X mouse model is characterized by robust neurological and neurobehavioral alterations, associated with a molecular profile related to synaptic function indicative of a cerebellar GABAergic hypofunction, pointing to Gabra1 and Gabra5 as novel druggable target candidates for CDD.