Neurodegenerative diseases are regarded as gradual, incurable conditions with an insidious onset. Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most prevalent neurodegenerative diseases reported globally. Developing effective treatment strategies for neurodegenerative diseases has remained a primary objective and a huge challenge for researchers. The therapeutic medications that are now approved for the treatment of neurodegenerative diseases merely treat the symptoms; the underlying pathology is not addressed. Therefore, the emergence of novel disease-modifying therapeutic modalities such as immunotherapy has opened a new path in developing effective treatments for neurogenerative diseases. Compared to other types of subunit active vaccines, virus-like particles (VLPs) are considerably more immunogenic as they present dense and repetitive viral antigen epitopes on their surface, which can trigger both humoral and cell-mediated immune responses. They are also a much safer option than the traditional inactivated and live-attenuated vaccines since they are devoid of viral genomes and are, therefore, non-pathogenic and non-infectious. Researchers have turned their attention to VLPs as an active immunotherapy candidate for AD due to the lessons learned from the AN1792 trial. Studies have shown that they effectively induce anti-Aβ, anti-tau, and anti-α-Synuclein antibodies while avoiding T-cell-related immune reactions in animal models of AD and PD. This review compiles the findings of preclinical animal model studies and clinical investigations on VLP-based vaccines for neurogenerative diseases thus far. The technical limitations and potential difficulties associated with the future application of VLP-based vaccines in patients with neurodegenerative diseases have also been covered.
Read full abstract