Transcranial magnetic stimulation (TMS) methods have become exciting techniques for altering brain activity and improving synaptic plasticity, earning recognition as valuable non-medicine treatments for a wide range of neurological disorders. Among these methods, repetitive TMS (rTMS) and theta-burst stimulation (TBS) show significant promise in improving outcomes for adults with complex neurological and neurodegenerative conditions, such as Alzheimer’s disease, stroke, Parkinson’s disease, etc. However, optimizing their effects remains a challenge due to variability in how patients respond and a limited understanding of how these techniques interact with crucial neurotransmitter systems. This narrative review explores the mechanisms of rTMS and TBS, which enhance neuroplasticity and functional improvement. We specifically focus on their effects on GABAergic and glutamatergic pathways and how they interact with key receptors like N-Methyl-D-Aspartate (NMDA) and AMPA receptors, which play essential roles in processes like long-term potentiation (LTP) and long-term depression (LTD). Additionally, we investigate how rTMS and TBS impact neuroplasticity and functional connectivity, particularly concerning brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase receptor type B (TrkB). Here, we highlight the significant potential of this research to expand our understanding of neuroplasticity and better treatment outcomes for patients. Through clarifying the neurobiology mechanisms behind rTMS and TBS with neuroimaging findings, we aim to develop more effective, personalized treatment plans that effectively address the challenges posed by neurological disorders and ultimately enhance the quality of neurorehabilitation services and provide future directions for patients’ care.
Read full abstract