The exponential growth in the use of network services through the design of various network infrastructures, has led to increased complexities and challenges in the network. A major problem in computer networks is privacy and security breach. Cyber attackers exploit loopholes to infiltrate and disrupt the operation of the network through various attacks. Anomaly-based intrusion detection often employs Artificial Neural Network techniques like Multi-layer Perceptron (MLP) to classify malicious and legitimate traffic. Nevertheless, these techniques are vulnerable to overfitting and require extensive labeled data and computational resources. Consequently, this reduces the accuracy of intrusion detection systems and increases the error detection rate. To minimize the error detection rate of the intrusion detection system, it is necessary to optimize the connection parameters of the MLP neural network such as weights and biases. To this end, we proposed an optimized MLP-based Intrusion Detection using Gray Wolf Optimization (GWOMLP-IDS) to optimize the learning process of the MLP neural network by optimizing weights and biases. GWO aims to select an optimal connection parameter during the learning process to minimize the error rate of intrusion detection. Extensive simulations in Python reveal the effectiveness of the proposed approach in terms of designated performance metrics.
Read full abstract