In this paper we consider, from the descriptional complexity point of view, a model of computation introduced in [1], namely accepting network of evolutionary processors with filtered connections (ANEPFCs). First we show that for each morphism h : V → W*, with V ∩ W = ∅, one can effectively construct an ANEPFC, of size 6 + |W|, which accepts every input word w and, at the end of the computation on this word, obtains h(w) in its output node. This result can be applied in constructing two different ANEPFCs, with 27 and, respectively, 26 processors, recognizing a given recursively enumerable language. The first architecture, based on the construction of a universal ANEPFC, has the property that only 7 of its 27 processors depend on the accepted language. On the other hand, all the 26 processors of the second architecture depend on the accepted language, but, differently from the first one, this network simulates efficiently (from both time and space perspectives) a nondeterministic Turing machine accepting the given language.
Read full abstract