Facial expression recognition (FER) utilizes artificial intelligence for the detection and analysis of human faces, with significant applications across various scenarios. Our objective is to deploy the facial emotion recognition network on mobile devices and extend its application to diverse areas, including classroom effect monitoring, human–computer interaction, specialized training for athletes (such as in figure skating and rhythmic gymnastics), and actor emotion training. Recent studies have employed advanced deep learning models to address this task, though these models often encounter challenges like subpar performance and an excessive number of parameters that do not align with the requirements of FER for embedded devices. To tackle this issue, we have devised a lightweight network structure named RS-Xception, which is straightforward yet highly effective. Drawing on the strengths of ResNet and SENet, this network integrates elements from the Xception architecture. Our models have been trained on FER2013 datasets and demonstrate superior efficiency compared to conventional network models. Furthermore, we have assessed the model’s performance on the CK+, FER2013, and Bigfer2013 datasets, achieving accuracy rates of 97.13%, 69.02%, and 72.06%, respectively. Evaluation on the complex RAF-DB dataset yielded an accuracy rate of 82.98%. The incorporation of transfer learning notably enhanced the model’s accuracy, with a performance of 75.38% on the Bigfer2013 dataset, underscoring its significance in our research. In conclusion, our proposed model proves to be a viable solution for precise sentiment detection and estimation. In the future, our lightweight model may be deployed on embedded devices for research purposes.
Read full abstract