With the rapid development of the Internet of Things (IoT), there are several challenges pertaining to security in IoT applications. Compared with the characteristics of the traditional Internet, the IoT has many problems, such as large assets, complex and diverse structures, and lack of computing resources. Traditional network intrusion detection systems cannot meet the security needs of IoT applications. In view of this situation, this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance. Usually, traditional intrusion detection algorithms require considerable time for training, and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes; therefore, it is necessary to study intrusion detection algorithms with low weights, short training time, and high detection accuracy for deployment and application on cloud nodes. An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats. This paper discusses the problems related to IoT intrusion prevention in cloud computing environments. Based on the analysis of cloud computing security threats, this study extensively explores IoT intrusion detection, cloud node monitoring, and intrusion response in cloud computing environments by using cloud computing, an improved extreme learning machine, and other methods. We use the Multi-Feature Extraction Extreme Learning Machine (MFE-ELM) algorithm for cloud computing, which adds a multi-feature extraction process to cloud servers, and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes. In our simulation experiments, a classical dataset for intrusion detection is selected as a test, and test steps such as data preprocessing, feature engineering, model training, and result analysis are performed. The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes. Furthermore, it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time, so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster.