The human kidney is a vital organ with a remarkable ability to coordinate the activity of up to a million nephrons, its main functional tissue unit (FTU), and maintain homeostasis. We developed tissue processing and analytical methods to construct a 3D map of neurovascular nephron connectivity of the human kidney and glean insights into how this structural organization enables coordination of various functions of the nephron, such as glomerular filtration, solute and water absorption, secretion by the tubules, and regulation of blood flow and pressure by the juxtaglomerular apparatus, in addition to how these functions change across disease and lifespans. Using light sheet fluorescence microscopy (LSFM) and morphometric analysis we discovered changes in anatomical orientation of the vascular pole, glomerular density, volume, and innervation through postnatal development and ageing. The extensive nerve network exists from cortex FTUs to medullary loop of Henle, providing connectivity within segments of the same nephron, and between separate nephrons. The nerves organize glomeruli into discreet communities (in the same network of nerves). Adjacent glomerular communities are connected to intercommunal "mother glomeruli" by nerves, a pattern repeating throughout the cortex. These neuro-nephron networks are not developed in postnatal kidneys and are disrupted in diseased kidneys (diabetic or hydronephrosis). This structural organization likely poises the entire glomerular and juxtaglomerular FTUs to synchronize responses to perturbations in fluid homeostasis, utilizing mother glomeruli as network control centers.