Groundwater is a vital source of freshwater in our daily lives. Global and local groundwater quality are degrading due to rapid urbanization, human interference, and policy variations, which is prominent in developing nations like Bangladesh. The major purpose of this research is to analyze aquifer vulnerability in Bangladesh's north-central area (Mymensingh) using conventional and modified DRASTIC modeling. Seven influencing hydrogeological factors were employed to develop and integrate conventional DRASTIC modeling: soil media, net recharge, aquifer depth, aquifer media, topography, hydraulic conductivity, and influence of vadose zone, while land use and lineament density were used with them for modified DRASTIC modeling. The findings from four vulnerability analysis detected 29.56% (93.35 sq.km), 22.24% (83.12 sq. km), 28.52 (106.93 sq. km), and 37.6% (140.55 sq.km) of the study area as high to very high vulnerable zones for groundwater pollution. Lower groundwater depth, higher hydraulic conductivity, moderate to high groundwater recharge, dense lineaments, dense settlement, agricultural land, and inland waterbodies together might indicate a high vulnerability in the research area. The validation results based on EC and nitrate levels show that conventional (r = 0.884, p ≤ 0.01; r = 0.951, p ≤ 0.01) and modified DRASTIC models (r = 0.868, p ≤ 0.01; r = 0.840, p ≤ 0.01) have a stronger association with unconfined aquifers, than confined aquifers. Modification with both additional parameters showed more accuracy compared to the conventional one. Frequent monitoring of groundwater quality in high and moderately vulnerable zones is recommended for earlier detection and prevention of potential aquifer degradation.
Read full abstract