AbstractAs the only oceanic connection between the Pacific and Arctic‐Atlantic Oceans, Bering Strait throughflow carries a climatological northward transport of about 1 Sv, contributing to the Atlantic Meridional Overturning Circulation (AMOC). Here, Lagrangian analysis quantifies the global distributions of volume transport, transit‐times, thermohaline properties, diapycnal transformation, heat and freshwater transports associated with Bering Strait throughflow. Virtual Lagrangian parcels, released at Bering Strait, are advected by the velocity of Estimating the Circulation and Climate of the Ocean, backward and forward in time. Backward trajectories reveal that Bering Strait throughflow enters the Pacific basin on the southeast side, as part of fresh Antarctic Intermediate Water, then follows the wind‐driven circulation to Bering Strait. Median transit time from S in Indo‐Pacific to Bering Strait is 175 years. Sixty‐four percent of Bering Strait throughflow enters the North Atlantic through the Labrador Sea. The remaining 36% flows through the Greenland Sea, warmed and salinified by the northward flowing Atlantic waters. Deep water formation of water flowing through Bering Strait occurs predominantly in the Labrador Sea. Subsequently, this water joins the lower branch of AMOC, flowing southward in the deep western boundary current as North Atlantic Deep Water. Median transit time from Bering Strait to S in South Atlantic is 160 years. The net heat transport of Bering Strait throughflow is northward everywhere, and net freshwater transport by Bering Strait throughflow is mostly northward. The freshwater transport is largest in the subpolar region of basin sectors: northward in the Pacific and Arctic and southward in the Atlantic.