This paper investigates the generation and characterization of soliton molecules (SM) in a semiconductor saturable absorber mirror (SESAM) mode-locked Yb-doped fiber laser with a linear cavity. By adjusting the pump power, both single-pulsing (SP) and double-pulsing (DP) states can be achieved. The observed soliton molecules are highly stable, with minimal temporal jitter despite being separated by 1.56ns. While SM have been observed in many different cavities this is one of the few reports in a Fabry–Perot cavity rather than a ring cavity and again most previous observations of soliton molecules having been in the anomalous dispersion regime. This configuration thus provides detailed and valuable insights into the behaviour of SM, shedding light on their formation, stability, and dynamics. This study contributes to understanding long range soliton interactions in fiber lasers, with potential implications for applications such as multi-bit transmission, bit storage, and pump-probe experiments to study the dynamics of chemical reactions.
Read full abstract