Reuniting denuded nerve ends after a long segmental peripheral nerve defect is challenging due to delayed axonal regeneration and incomplete, nonspecific reinnervation, as conventional hollow nerve guides fail to ensure proper fascicular complementation and obstruct axonal guidance across the defects. This study focuses on fabricating multifilament conduits using a plant-derived anionic polysaccharide, pectin, where the abundant availability of carboxylate (COO-) functional groups in pectin facilitates instantaneous sol-gel transition upon interaction with divalent cations. Despite their advantages, pectin hydrogels encounter structural instability under physiological conditions. Hence, pectin is conjugated with light-sensitive methacrylate residues (49.8% methacrylation) to overcome these issues, enabling the fabrication of dual cross-linked multifilament nerve conduits through an ionic interaction-driven, template-free 3D wet writing process, followed by photo-cross-linking at 525 nm. The anatomical equivalence including peri-, epi-, and endoneurium structures of the customized multifilament conduits was confirmed through scanning electron micrographs and micro-CT analysis of rat and goat sciatic nerve tissues. Furthermore, the fabricated multifilament nerve conduits demonstrated cytocompatibility and promoted the expression of neuron-specific intermediate filament protein (NF-200) in PC12 cells and neurite outgrowth of 16.90 ± 1.82 μm on day 14. Micro-CT imaging of an anastomosed native goat sciatic nerve with an 8-filament conduit demonstrated precise fascicular complementation in an ex vivo interpositional goat model. This approach not only eliminates the need for a suture-intensive ligation process but also highlights the customizability of multifilament conduits to meet patient- and injury-specific needs.