Hippocampal serotonin (5-hydroxytryptamine, 5-HT) synthesis, as determined by the accumulation of 5-hydroxytryptophan (5-HTP) following inhibition of L-aromatic amino acid decarboxylase with NSD 1015, was inhibited by systemic administration of the selective serotonin reuptake inhibitors fluoxetine (10 mg/kg i.p.) and paroxetine (3 mg/kg i.p.). Pretreatment of rats with the selective 5-HT1A receptor antagonist WAY 100635 for a period of 7 days using subcutaneously implanted osmotic minipumps (1 mg/kg/day) was sufficient to block the inhibition of 5-HT synthesis following the 5-HT 1A receptor agonist 8-OH-DPAT (0.3 mg/kg s.c.), but failed to inhibit the decrease of hippocampal 5-HT synthesis by fluoxetine (10 mg/kg i.p.) or paroxetine (3 mg/kg i.p.). Similarly, pretreatment of rats with GR 127935 (5 mg/kg i.p.), an antagonist with high affinity for 5-HT1B/D receptors, blocked the reduction of hippocampal 5-HT synthesis following the 5-HT receptor agonist TFMPP (3 mg/kg s.c.) without affecting the reduction of hippocampal 5-HT synthesis by either fluoxetine or paroxetine. In contrast, pretreatment with WAY 100635 (1 mg/kg/day, for 7 days s.c. in osmotic minipumps) in combination with GR 127935 (5 mg/kg i.p.) significantly attenuated the decrease of hippocampal 5-HT synthesis by both fluoxetine and paroxetine. These results indicate that both 5-HT1A and 5-HT1B/1D receptors, which function in the rat as inhibitory somatodendritic and nerve terminal autoreceptors, independently regulate hippocampal 5-HT synthesis and must be simultaneously blocked to prevent the inhibition of 5-HT synthesis by selective serotonin reuptake inhibitors which increase 5-HT availability at both nerve terminals in hippocampus and 5-HT cell bodies in the raphe nuclei.
Read full abstract