BackgroundCoronary computed tomography angiography (CCTA) is recommended as the first line diagnostic imaging modality in low to intermediate risk individuals suspected of stable coronary artery disease (CAD). However, CCTA exposes patients to ionising radiation and potentially nephrotoxic contrast agents. Invasive coronary angiography (ICA) is the gold-standard investigation to guide coronary revascularisation strategy, however, invasive procedures incur an inherent risk to the patient. Coronary magnetic resonance angiography (Coronary MRA) avoids these issues. Nevertheless, clinical implementation is currently limited due to extended scanning durations, inconsistent image quality, and consequent lack of diagnostic accuracy. Several technical Coronary MRA innovations including advanced respiratory motion correction with 100% scan efficiency (no data rejection), fast image acquisition with motion-corrected undersampled image reconstruction and deep-learning (DL)-based automated planning have been implemented and now await clinical validation in multi-centre trials. MethodsThe objective of the iNav-AUTO CMRA prospective multi-centre study is to evaluate the diagnostic accuracy of a newly developed, state-of-the-art, standardised, and automated Coronary MRA framework compared to CCTA in 230 patients undergoing clinical investigation for CAD. The study protocol mandates the administration of oral beta-blockers to decrease heart rate to below 60bpm and the use of sublingual nitroglycerine spray to induce vasodilation. Additionally, the study incorporates the utilisation of standardised postprocessing with sliding-thin-slab multiplanar reformatting, in combination with evaluation of the source images, to optimize the visualisation of coronary artery stenosis. DiscussionIf proven effective, Coronary MRA could provide a non-invasive, needle-free, yet also clinically viable, alternative to CCTA. Trial RegistrationThis study is registered at clinicaltrials.gov (NCT05473117).