Recently, photocurable coatings are being used frequently. However, it is worth mentioning that the use of photopolymerization has its drawbacks, especially in the case of curing coatings on three-dimensional surfaces and in places that are difficult to access for UV radiation. However, it is possible to develop a system in which UV technology and thermal methods for curing coatings can be combined. Moreover, the obtained resins are derived from low-viscosity epoxy resins or diglycidyl ethers, making them an ideal building material for photopolymerization-based three-dimensional printing techniques. Due to the need to improve this method, a series of epoxy (meth)acrylates containing both epoxy and (meth)acrylate groups were obtained via the addition of acrylic or methacrylic acid to epoxy resin, diglycydylether of bisphenol A epoxy resin (DGEBA), cyclohexane dimethanol diglycidyl ether (CHDMDE) and neopentyl glycol diglycidyl ether (NPDE). The structures of the synthesized copolymers were confirmed through spectroscopic analysis (FTIR) and studied regarding their nonvolatile matter content (NV) and acid values (PAVs), as well as their epoxy equivalent values (EEs). Due to the presence of both epoxy and double carbon-carbon pendant groups, two distinct mechanisms can be applied: cationic and radical. Hence, the obtained resins can be cured using UV radiation with thermally appropriate conditions and initiators. This type of method can be used as a solution to many problems currently encountered in using UV technology, such as failure to cure coatings in underexposed areas as well as deformation of coatings. Synthesized epoxy (meth)acrylate prepolymers were employed to formulate photocurable coating compositions. Furthermore, the curing process and properties of cured coatings were investigated regarding some structural factors and parameters. Among the synthesized materials, the most promising are those based on epoxy resin, characterized by their high glass transition temperature values and satisfactory functional properties.
Read full abstract