In this paper a mean field model of spatio-temporal electroencephalographic activity in the neocortex is used to computationally study the emergence of neocortical gamma oscillations as a result of neuronal response modulation. It is shown using a numerical bifurcation analysis that gamma oscillations emerge robustly in the solutions of the model and transition to beta oscillations through coordinated modulation of the responsiveness of inhibitory and excitatory neuronal populations. The spatio-temporal pattern of the propagation of these oscillations across the neocortex is illustrated by solving the equations of the model using a finite element software package. Thereby, it is shown that the gamma oscillations remain localized to the regions of neuronal modulation. Moreover, it is discussed that the inherent spatial averaging effect of commonly used electrocortical measurement techniques can significantly alter the amplitude and pattern of fast oscillations in neocortical recordings, and hence can potentially affect physiological interpretations of these recordings.
Read full abstract