Clinical studies in humans and experiments in macaques suggest that damage to the anterior and the mediodorsal thalamus can induce a moderate amnesia, but a more dense impairment may result from substantial damage within the temporal lobes or their subcortical connections. Lesions of the anterior thalamus in macaques produce impairments which resemble those seen after lesions of the fornix–mamillary pathway, which carries projections from the hippocampus to the anterior thalamus, while lesions of the mediodorsal thalamus, which receives inputs from frontal and temporal cortex, produce moderate impairments on a wider range of memory tasks. In the present study, we have made bilateral excitotoxic lesions of either the anterior or the mediodorsal thalamus, or both, in marmoset monkeys. Monkeys with lesions of both thalamic nuclei were severely impaired on retention and new learning of examples of the visuospatial conditional task, a task which is specifically impaired by lesions of the fornix or hippocampus. They were not impaired on performance of a visuovisual conditional task on which monkeys with hippocampal lesions are impaired, nor were they impaired on any visual discrimination task, including the concurrent discrimination task on which monkeys with temporal neocortical ablations are impaired. Monkeys with separate lesions of either the anterior or the mediodorsal thalamus were not impaired on any of these tasks. These results suggest that the mediodorsal thalamus and the anterior thalamus are both involved in processing the output of the hippocampal–fornix–thalamic circuit. Dense amnesia may result from damage to circuits additional to the temporal lobe efferents to either the anterior or the mediodorsal nuclei.
Read full abstract