A distributed method for concurrent traffic signal and routing control of traffic networks is proposed. The method is based on the multi-commodity store-and-forward model, in which the destinations are the commodities. The system benefits from the communication between vehicles and infrastructure, providing optimal signal timings to intersections and routes to vehicles on a link-by-link basis. Using the augmented Lagrangian to model the constraints into the objective, the baseline centralized problem is decomposed into a set of objective-coupled subproblems, one for each intersection, enabling the solution to be computed by a distributed-gradient projection algorithm. The intersection agents only need to communicate and coordinate with neighboring intersections to ensure convergence to the optimal solution while tolerating suboptimal iterations that offer more flexibility, unlike other distributed approaches. Through microsimulation, we demonstrate the effectiveness of the proposed algorithm in traffic networks with time-varying demand. Computational analysis shows that the distributed problem is suitable for real-time applications. A robustness analysis show that the distributed formulation enables a graceful degradation of the system in case of failure.