Abstract This article is concerned with the following nonlinear supercritical elliptic problem: − M ( ‖ ∇ u ‖ 2 2 ) Δ u = f ( x , u ) , in B 1 ( 0 ) , u = 0 , on ∂ B 1 ( 0 ) , \left\{\begin{array}{ll}-M(\Vert \nabla u{\Vert }_{2}^{2})\Delta u=f\left(x,u),& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{B}_{1}\left(0),\\ u=0,& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial {B}_{1}\left(0),\end{array}\right. where B 1 ( 0 ) {B}_{1}\left(0) is the unit ball in R 2 {{\mathbb{R}}}^{2} , M : R + → R + M:{{\mathbb{R}}}^{+}\to {{\mathbb{R}}}^{+} is a Kirchhoff function, and f ( x , t ) f\left(x,t) has supercritical exponential growth on t t , which behaves as exp [ ( β 0 + ∣ x ∣ α ) t 2 ] \exp {[}({\beta }_{0}+| x\hspace{-0.25em}{| }^{\alpha }){t}^{2}] and exp ( β 0 t 2 + ∣ x ∣ α ) \exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }}) with β 0 {\beta }_{0} , α > 0 \alpha \gt 0 . Based on a deep analysis and some detailed estimate, we obtain Nehari-type ground state solutions for the above problem by variational method. Moreover, we can determine a fine upper bound for the minimax level under weaker assumption on liminf t → ∞ t f ( x , t ) exp [ ( β 0 + ∣ x ∣ α ) t 2 ] {\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp {[}({\beta }_{0}+| \hspace{-0.25em}x\hspace{-0.25em}{| }^{\alpha }){t}^{2}]} and liminf t → ∞ t f ( x , t ) exp ( β 0 t 2 + ∣ x ∣ α ) {\mathrm{liminf}}_{t\to \infty }\frac{tf\left(x,t)}{\exp ({\beta }_{0}{t}^{2+| x{| }^{\alpha }})} , respectively. Our results generalize and improve the ones in G. M. Figueiredo and U. B. Severo (Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.) and Q. A. Ngó and V. H. Nguyen (Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ. 59 (2020), no. 2, Paper No. 69, 30.) for M ( t ) = 1 M(t)=1 . In particular, if the weighted term ∣ x ∣ α | x\hspace{-0.25em}{| }^{\alpha } is vanishing, we can obtain the ones in S. T. Chen, X. H. Tang, and J. Y. Wei (2021) (Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), no. 1, Paper No. 38, Theorem 1.3 and Theorem 1.4) immediately.
Read full abstract