The 2030 Agenda for Sustainable Development proposes to considerably reduce the number of deaths and diseases caused by air pollution. It pays special attention to attaining this via urban air governance and management. Although the development of China's air governance has been a lengthy process, there is no indication of instituting a plan based on land supply (LS) in the foreseeable future. This paper introduces a novel perspective of the role of LS in managing air pollution, and builds a comprehensive analysis framework that includes the quantity, structure, and price of LS for management of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5). The dynamic relationship between LS and PM2.5 is revealed by a panel-data vector autoregression model on a district scale. The study found that: (1) The Central District has the highest average annual PM2.5 concentration in China from the year 2009–2017. (2) The supply of the four types of land—industrial and mining storage land (IMSL), commercial and business facilities land (CBFL), residential land (RL), and other land (OL)—showed increase in the Central District, while only IMSL decreased in the Western District. The supply of IMSL decreased the most in the Northeast District, and in the Eastern District, only the supply of OL increased. (3) In the Northeast District, the quantity, structure, and price of LS have no significant effect on PM2.5 concentration. However, in China, the Eastern District, and Central District, the bidding, auction, and listing prices have a significant negative effect on the PM2.5 concentration. As for the Western District, it exhibits not only the “negative price effect,” but also the “negative quantity effect.” In future, the government should adopt different strategies: (1) For China, the Eastern District, and Central District, the bidding, auction, and listing prices should be further increased; (2) In the Western District, local government should also focus on expanding the area of LS.
Read full abstract