Motivated by computing duplication patterns in sequences, a new problem called the longest letter-duplicated subsequence (LLDS) is proposed. Given a sequence S of length n, a letter-duplicated subsequence is a subsequence of S in the form of x1d1x2d2…xkdk\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x_1^{d_1}x_2^{d_2}\\ldots x_k^{d_k}$$\\end{document} with xi∈Σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x_i\\in \\Sigma $$\\end{document}, xj≠xj+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x_j\ e x_{j+1}$$\\end{document} and di≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d_i\\ge 2$$\\end{document} for all i in [k] and j in [k-1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[k-1]$$\\end{document}. A linear time algorithm for computing a longest letter-duplicated subsequence (LLDS) of S can be easily obtained. In this paper, we focus on two variants of this problem: (1) ‘all-appearance’ version, i.e., all letters in Σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Sigma $$\\end{document} must appear in the solution, and (2) the weighted version. For the former, we obtain dichotomous results: We prove that, when each letter appears in S at least 4 times, the problem and a relaxed version on feasibility testing (FT) are both NP-hard. The reduction is from (3+,1,2-)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(3^+,1,2^-)$$\\end{document}-SAT, where all 3-clauses (i.e., containing 3 lals) are monotone (i.e., containing only positive literals) and all 2-clauses contain only negative literals. We then show that when each letter appears in S at most 3 times, then the problem admits an O(n) time algorithm. Finally, we consider the weighted version, where the weight of a block xidi(di≥2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x_i^{d_i} (d_i\\ge 2)$$\\end{document} could be any positive function which might not grow with di\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d_i$$\\end{document}. We give a non-trivial O(n2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$O(n^2)$$\\end{document} time dynamic programming algorithm for this version, i.e., computing an LD-subsequence of S whose weight is maximized.
Read full abstract