Using bivalves to indicate aquatic pollutants was favorable for discerning the negative effects of high levels of metal accumulation in tissue. We investigated the correlation between trace metal accumulation and the tissue oxidative response of two bivalves. The Asian green mussel Perna viridis and the blood cockle Tegillarca granosa were sampled along with seawater and sediments from three locations around Pattani Bay, Thailand. Accumulation of nine trace metals (cadmium, cobalt, copper, chromium, nickel, manganese, iron, zinc, and lead) in seawater, sediments, and tissue and the oxidative tissue response were evaluated. Metal bioaccumulation factor, biota-sediment accumulation factor, and histopathology were also indicated. The present study found that P. viridis and T. granosa were macroconcentrators and bioaccumulative of cadmium, and their tissue accumulation of cadmium was strongly related to lipid peroxidation activation. Perna viridis exhibited a higher oxidative response than T. granosa, as indicated by malondialdehyde, catalase, and reduced glutathione levels. The present study indicated that P. viridis and T. granosa were macroconcentrators and bioaccumulative of cadmium, and their tissue accumulation of cadmium was strongly related to lipid peroxidation activation. Research has shown discernible negative effects of a high level of metal accumulation in tissue, and deformed and damaged tissues were present in the gills, digestive glands, intestines, and feet of P. viridis and T. granosa.
Read full abstract