Chrysanthemum morifolium Ramat. 'Huaihuang' is a traditional Chinese medicinal plant. However, a black spot disease caused by Alternaria sp., a typical necrotrophic fungus, has a serious damaging influence on the field growth, yield, and quality of the plant. 'Huaiju 2#' being bred from 'Huaihuang', shows resistance to Alternaria sp. bHLH transcription factor has been widely studied because of their functions in growth development, signal transduction, and abiotic stress. However, the function of bHLH in biotic stress has rarely been studied. To characterize the resistance genes, the CmbHLH family was surveyed in 'Huaiju 2#'. On the basis of the transcriptome database of 'Huaiju 2#' after Alternaria sp. inoculation, with the aid of the Chrysanthemum genome database, 71 CmbHLH genes were identified and divided into 17 subfamilies. Most (64.8%) of the CmbHLH proteins were rich in negatively charged amino acids. CmbHLH proteins are generally hydrophilic proteins with a high aliphatic amino acid content. Among the 71 CmbHLH proteins, five CmbHLHs were significantly upregulated by Alternaria sp. infection, and the expression of CmbHLH18 was the most significant. Furthermore, heterologous overexpression of CmbHLH18 could improve the resistance of Arabidopsis thaliana to necrotrophic fungus Alternaria brassicicola by enhancing callose deposition, preventing spores from entering leaves, reducing ROS accumulation, increasing the activities of antioxidant enzymes and defense enzymes, and promoting their gene expression levels. These results indicate that the five CmbHLHs, especially CmbHLH18, may be considered candidate genes for resistance to necrotrophic fungus. These findings not only increase our understanding of the role CmbHLHs play in biotic stress but also provide a basis by using CmbHLHs to breed a new variety of Chrysanthemum with high resistance to necrotrophic fungus.
Read full abstract