Context. Fast-moving knots (FMK) in the Galactic supernova remnant Cassiopeia A consist mainly of metals and allow us to study element production in supernovae and to investigate shock physics in great detail.Aims. We discuss and suggest observations of a previously unexplored class of spectral lines, the metal recombination lines in optical and near-infrared bands, emitted by the cold ionized and cooling plasma in fast-moving knots.Methods. By tracing ion radiative and dielectronic recombination, collisional l -redistribution and radiative cascade processes, we compute resulting oxygen, silicon and sulphur recombination line emissivities. This allows us to determine the oxygen recombination line fluxes, based on a fast-moving knot model that predicts the existence of highly-ionized ions from moderate to very low plasma temperatures.Results. The calculations predict oxygen ion recombination line fluxes detectable with modern optical telescopes in the wavelength range from 0.5 to 3 μ m. Recombination line flux ratios to collisionally-excited lines will allow us to probe in detail the process of rapid cloud cooling after the passage of a shock front, to test high abundances of O4+ , O5+ and O6+ ions at low temperatures and measure them, to test existing theoretical models of FMK and to build more precise ones.