Designing and synthesizing phosphate nonlinear optical materials with novel structures and excellent properties remains challenging. In this work, the electronic structure and optical properties (second harmonic generation (SHG) response or birefringence) of alkali rare-earth double phosphates M3RE(PO4)2 (M = K, Rb; RE = Y, La, and Lu) are systematically investigated. It is worth mentioning that P31m-Rb3Lu(PO4)2 was successfully synthesized by a flux-method, and the UV–vis–NIR diffuse reflectance spectroscopy showed that Rb3Lu(PO4)2 exhibits a short absorption edge at 207 nm and a high transmittance of 77.9 %. Based on first-principles calculations, the results show that the birefringence of the M3RE(PO4)2 series of crystals exhibits significant differences (0.009-0.028@1064 nm). Subsequently, analysis of the electronic structure and the real-space atom cutting method reveals that rare-earth polyhedra play a major role in enhanced birefringence. Overall, this work enriches the study of nonlinear optical crystals of rare earth phosphates and provides a case for further exploration.