Mapping and monitoring crops are the most complex and difficult tasks for experts processing and analyzing remote sensing (RS) images. Classifying crops using RS images is the most expensive task, and it requires intensive labor, especially in the sample collection phase. Fieldwork requires periodic visits to collect data about the crop’s physiochemical characteristics and separating them using the known conventional machine learning algorithms and remote sensing images. As the problem becomes more complex because of the diversity of crop types and the increase in area size, sample collection becomes more complex and unreliable. To avoid these problems, a new segmentation model was created that does not require sample collection or high-resolution images and can successfully distinguish wheat from other crops. Moreover, UNet is a well-known Convolutional Neural Network (CNN), and the semantic method was adjusted to become more powerful, faster, and use fewer resources. The new model was named Fast-UNet and was used to improve the segmentation of wheat crops. Fast-UNet was compared to UNet and Google’s newly developed semantic segmentation model, DeepLabV3+. The new model was faster than the compared models, and it had the highest average accuracy compared to UNet and DeepLabV3+, with values of 93.45, 93.05, and 92.56 respectively. Finally, new datasets of time series NDVI images and ground truth data were created. These datasets, and the newly developed model, were made available publicly on the Web.