AimsThe aim of our study was to determine the effect of histone deacetylase (HDAC) inhibitors (HDACis) on somatostatin type-2 receptor (SSTR2) expression and [111In]In-/[177Lu]Lu-DOTA-TATE uptake in vitro and in vivo. Materials and methodsThe human cell lines NCI-H69 (small-cell lung carcinoma) and BON-1 (pancreatic neuroendocrine tumor) were treated with HDACis (i.e. entinostat, mocetinostat (MOC), LMK-235, CI-994 or panobinostat (PAN)), and SSTR2 mRNA expression levels and [111In]In-DOTA-TATE uptake were measured. Furthermore, vehicle- and HDACi-treated NCI-H69 and BON-1 tumor-bearing mice were injected with radiolabeled DOTA-TATE followed by biodistribution studies. Additionally, SSTR2 and HDAC mRNA expression of xenografts, and of NCI-H69, BON-1, NCI-H727 (human pulmonary carcinoid) and GOT1 (human midgut neuroendocrine tumor) cells were determined. Key findingsHDACi treatment resulted in the desired effects in vitro. However, no significant increase in tumoral DOTA-TATE uptake was observed after HDACi treatment in NCI-H69 tumor-bearing animals, whereas tumoral SSTR2 mRNA and/or protein expression levels were significantly upregulated after treatment with MOC, CI-994 and PAN, i.e. a maximum of 2.1- and 1.3-fold, respectively. Analysis of PAN-treated BON-1 xenografts solely demonstrated increased SSTR2 mRNA expression levels. Comparison of HDACs and SSTR2 expression in BON-1 and NCI-H69 xenografts showed a significantly higher expression of 6/11 HDACs in BON-1 xenografts. Of these HDACs, a significant inverse correlation was found between HDAC3 and SSTR2 expression (Pearson r = −0.92) in the studied cell lines. SignificanceTo conclude, tumoral uptake levels of radiolabeled DOTA-TATE were not enhanced after HDACi treatment in vivo, but, depending on the applied inhibitor, increased SSTR2 expression levels were observed.