The photo-activation and photo-dissolution processes of pyrite (FeS2) can affect the environmental behavior of the co-existing hexavalent chromium (Cr(VI)). But the photochemical performance of FeS2 is intimately dependent on its exposed facets. Herein, FeS2 nanosheets (FeS2 NS) and FeS2 nanocubes (FeS2 NC) with the dominant exposed facets of (001) and (210)/(100) respectively are prepared. The more Fe3+, Fe2+, and SO42− are released in the FeS2 NS system than the other system due to its more excellent generation ability of photogenerated electrons and reactive oxygen species. The higher surface energy on (001) facet leads to the faster dissolution rate of FeS2 NS. Due to the optimal production ability of photogenerated electrons and Fe2+ of (001) facet, the much higher Cr(VI) elimination efficiency in the FeS2 NS system is observed than that in the FeS2 NC (72.8%) system within 120 min. This work could help to unveil the influence of FeS2 on the fate of Cr(VI) in surface environment, and offer a theoretical support to clarify the influence of heavy metal ions on the iron sulfide minerals.
Read full abstract