Two types of bifunctional amido-ether ligands (syn-L and anti-L) with the rigid anthracene skeleton were designed to support dinuclear group 4 metal complexes. All organic ligands and organometallic complexes (syn-M2 and anti-M2; M = Hf, Zr, and Ti) were fully characterized by 1H and 13C NMR spectroscopies and elemental analyses. The anti-Hf2 complex showed two confirmations at room temperature with C2-symmetry or S2-symmetry that can inter-exchange, as indicated by VT NMR, while only a C2-symmetric isomer was observed for syn-Hf2 complex at room temperature. However, for Zr and Ti analogues, both syn and anti complexes exhibited only one conformation at room temperature. The molecular structures of complexes syn-Hf2, anti-Hf2, and syn-Ti2 in the solid state were further determined by single-crystal X-ray diffraction, revealing the distances between two metal centers in syn-M2 from 7.138 Å (syn-Ti2) to 7.321 Å (syn-Hf2) but a much farther separation in anti-M2 (8.807 Å in C2-symmetric anti-Hf2). The mononuclear complex (2-CH3O-C6H4-N-C14H9)Zr(NMe2)3 (mono-Zr1) was also prepared for control experiments. In the presence of alkyl aluminum (AlEt3) as the alkylating agent and trityl borate ([Ph3C][B(C6F5)4]) as the co-catalyst, all metal complexes were tested for copolymerization of ethylene with 1-octene at high temperature (130 °C). The preliminary polymerization results revealed that the activity was highly dependent upon the nature of metal centers, and syn-Zr2 showed the highest activity of 9600 kg(PE)·mol-1 (Zr)·h-1, which was about 17- and 2.2-fold higher than those of syn-Hf2 and syn-Ti2, respectively. Benefitting from both steric proximity and electronical interaction of two metal centers, syn-Zr2 exhibited significant cooperativity in comparison to anti-Zr2 and mono-Zr1, with regard to activity and molecular weight and 1-octene incorporation of resultant copolymers.
Read full abstract