We review our recent results on the classification of long and short gamma-ray bursts (GRBs) in different subclasses. We provide observational evidences for the binary nature of GRB progenitors. For long bursts the induced gravitational collapse (IGC) paradigm proposes as progenitor a tight binary system composed of a carbon-oxygen core (COcore) and a neutron star (NS) companion; the supernova (SN) explosion of the COcore triggers a hypercritical accretion process onto the companion NS. For short bursts a NS–NS merger is traditionally adopted as the progenitor. We also indicate additional sub-classes originating from different progenitors: (COcore)–black hole (BH), BH–NS, and white dwarf–NS binaries. We also show how the outcomes of the further evolution of some of these sub-classes may become the progenitor systems of other sub-classes.