The construction of a chemical library based on natural products is a promising method for the synthesis of natural product-like compounds. In this study, we synthesized a terpenoid alkaloid-like compound library based on the humulene skeleton. Our strategy, which enables access to diverse ring systems such as 11-membered monocyclic, oxabicyclic, and medium-sized aza ring-containing scaffolds, involves the introduction of a nitrogen atom, an intermolecular C-O bond formation via Lewis acid-mediated epoxide-opening transannulation, and a ring-reconstruction strategy based on olefin metathesis. A cheminformatics analysis based on their structural and physicochemical properties revealed that the synthesized compounds have high three-dimensionality and high natural product likeness scores but with structural novelty. The usefulness of the terpenoid alkaloid-like compound library for drug discovery and the accessibility to structure-activity relationship studies were validated by performing an assay for osteoclast-specific tartrate-resistant acid phosphatase activity, resulting in the identification of a seed compound for bone-resorptive diseases such as osteoporosis.
Read full abstract